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Abstract— We study linear time invariant (LTI) continuous
time consensus dynamics in the presence of bounded communi-
cation delays. Contrary to traditional Lyapunov based methods,
we approach the problem using Fixed Point Theory. This
method, allows us to create an appropriate complete functional
metric space and through contraction mappings to establish
the existence and uniqueness of a solution of this model. We
explore the case of constant as well as distributed delays.

I. Introduction

Distributed consensus dynamics have, over the past
decade, carried the beacon of research in the control com-
munity. Starting from the seminal work of Tsitsiklis [1] the
subject was reheated with the work of Jadbabaie et al. [2]
who gave a rigorous proof of the leaderless co-ordination in
a flocking model proposed by Viscek et al. [3].

Since then, an enormous amount of work has been pro-
duced from different fields of Applied Science concern-
ing types of coordination among autonomous agents who
exchange information in a distributed way, under several
different frameworks (e.g. deterministic or stochastic) and
communication conditions. See for example [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13] and references therein.
All of the proposed models are based on a specific type of
dynamic evolution of the agents’ states known as consensus
algorithm. Each agent evolves it’s state by some type of
convex averaging of the states of it’s ’neighbours’. Each new
state lies on the convex hull of the previous averaged ones so
that the limit value is common to all the agents on condition
that certain communication criteria hold (see for example
[4]).

In this work, we revisit the classic linear time invariant
consensus dynamics problem but in this case, we assume de-
lays in the communication between agents. Based on results
from current literature (as well as rigorous attempts presented
in [14]), we believe that a Lyapunov-based approach for the
stability of the network to the convergence subspace is not
only restricting on the assumptions for the communication
graph; but also does not shed light upon the critical quantities
associated with the asymptotic behavior of the system as it is
for instance, the consensus point or the rate of convergence.

On the other hand, a Fixed Point Theory approach appears
to fit better to these types of problems where robust results
can be obtained in the price of extensive analysis and,
perhaps, more conservative assumptions.

A. Introduction to the model and related literature

The model we will discuss in this work is of the form

ẋi(t) =
∑

j

ai j(x j(t−τ)− xi(t)) (MDL)

where the letter τ will be used here representing a generic
type of bounded delay. Each agent evolves according to the
dynamics of it’s own state as well as a retarded measurement
of the states of it’s neighbouring agents. Surprisingly enough,
this simple model has not received that much attention ,
compared to other and more complex models. To the best
of our knowledge, we mention four relative works.

A simple delayed consensus algorithm was proposed and
discussed in the work of Olfati-Saber et. al [12] where the
model

ẋi(t) =
∑

j

ai j(x j(t−τ)− xi(t−τ)) (1)

With τ > 0 constant and uniform for all agents, a frequency
method analysis was carried through. The problem with this
method is that it is over simplistic and cannot be generalized
in case the weights are time varying or the delays are
incommensurate.

In [1], [4] the authors consider a discrete time version
of (MDL) with, in fact, time varying delays τ = τ(t). On
condition that the delay is uniformly bounded from above,
the strategy of attacking the problem is to extend the state
space by adding artificial agents which played no actual
role in the dynamics other than transmitting a pre-described
delayed version of an agent’s state. This method although
applicable in the discrete time, it is unclear how it would
work in a continuous time system, unless the latter one is
discretized and solved numerically.

In [10] the authors discuss the convergence properties of
a non-linear model which has the form

ẋi =
∑

j

ai j fi j(x j(t−τ)− xi) (2)

Using passivity assumptions on fi j they apply invariance
principles to derive delay-independent convergence results
both in static and switching topologies. The main setback of
this approach, also noted by the authors, is that nothing can
be said about either the consensus point or either the rate of
convergence to it.

The last type of models, have to do with rendezvouz
type of algorithms. For example in [11] the authors propose
a second order consensus based algorithms, where agents
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asymptotically meet in a common place as their speed
vanishes to zero. This algorithm is of the form

v̇i(t) = −cvi(t) +

N∑
i=1

ai j(r j(t−τ)− ri(t)) (3)

The authors make a Lyapunov-Krasovskii argument on the
base that the delayed quantities act only as perturbations to
the main dynamical equation. Again, little can be said about
the rate of convergence of this system.

B. Structure of the paper

This work is organized as follows. In section 2, we
introduce the main notations and definitions that we will use
throughout the paper. In section 3 we introduce our models,
pose the sufficient assumptions and the main results. In
section 4, we take a digression to a Lyapunov-based approach
outlining the difficulties of such an attempt. In section 5, we
introduce the family of metric spaces we are interested in
and prove an important result which will help us make use of
Contraction Mappings. The analysis of linear time invariant
weights will be carried out in section (V) using undirected
connected network communication (i.e. symmetric weights
ai j = a ji). In section (V-A) we will briefly explain how these
results can be adapted in the case of asymmetric weighted
graphs. In section (VI) we discuss the case of distributed
delays and some final comments are made in Section (VII).

II. Notations and Definitions

In this section, we will explain the preliminary notations
and definitions which will be used in this work. By N <∞
we denote the number of agents. The set of agents is denoted
by [N] := {1, . . . ,N}. Each agent i ∈ [N] is associated with a
real quantity xi ∈ R which models the state of agent i.

The Euclidean vector space RN frames the state space
of the system with state vectors x = (xi, . . . , xN)T and it
is equipped with the norm | · |1, (i.e. |x|1 =

∑N
i=1 |xi|). For

a square N × N matrix A the induced norm is defined as
|A|1 = sup|x|1=1 |Ax|1. By 1 we understand the N dimensional
column vector of all ones. The subspace of RN of interest is
defined by

∆ = {y ∈ RN : y = 1k for some k ∈ R}

and it is traditionally called the consensus space. By ∆c we
understand the complementary space of ∆. By L1 we denote
the space of absolutely integrable functions.

A. Algebraic Graph Theory

In this subsection we review some tools from algebraic and
spectral graph theory. For more information on the subject
the interested reader is refered to [15], [16], [6].

The mathematical object which will be used to model the
communication structure among the N agents is the weighted
directed graph. This is defined as the triple G = (V,E,W)
where V is the set of nodes (here [N]), E is a subset of
V × V which characterizes the established communication
connections and W is a set associating a positive number
(the weight) with any member of E. So by ai j we will

denote the weight in the connection from node j to node
i and this is amount of the effect that j has on i. If ai j = 0
then ( j, i) < E. This is a directed graph and in this work
we will be interested in the family routed out branching
graphs or strongly connected directed graphs. A rooted out
branching graph is a graph that contains a spanning tree
(i.e. at least one node is a root) and a strongly connected
graph is a graph that each node is a root. Moreover, in case
of symmetric communicating weights ai j = a ji the graph is
called undirected; hence simple connectivity suffices for our
results. Given E, each agent i has a neighbourhood of nodes,
to which it is adjacent. We denote by Ni the subset of V such
that ( j, i) ∈ E and by |Ni| it’s cardinality. The degree of any
node i, denoted by di, is the sum of the weights with which
each of it’s adjacent nodes affects him, i.e. di =

∑
j∈Ni ai j. In

the analysis to follow,
∑

i, j stands for
∑

i=1
∑

j∈Ni .
A matrix representation of G is through the adjacency

matrix A = [ai j], the degree matrix D = Diag[di] and the
Laplacian L := D−A. If G is directed we name it as in-degree
Laplacian. If G is undirected it is simply known as graph
Laplacian. The spectral properties of L are of interest. In case
of undirected network the L is a symmetric positive semi-
definite matrix. So there is an eigensystem of real eigenvalues
and mutually orthogonal eigenvectors such that

0 = λ1(L) ≤ λ2(L) ≤ ... ≤ λN(L)

and ui|
N
i=1 is the family of eigenvectors such that uT

j ui = δi j.
An important result is that a (directed) graph is assumed to
be (strongly) connected if and only if λ2(L) > 0

B. Fixed Point Theory

By the pair (M,ρ) we define a metric space. In this work
we consider only complete metric spaces and one way to
rigorously define them is through a compactness argument
of a subset of a Banach space.

For 0< τ<∞ consider the vector space B=C([−τ,∞),RN)
of continuous bounded functions and the norm |φ| =

supt≥−τ |φ(t)|1 for φ ∈ B. It is well-known that the pair (B, | · |)
consists a Banach space, [17]. A subset of B, M, is said to
be complete if every Cauchy sequence of M converges in
M. Such a subset is together with the metric

ρ(φ1,φ2) = |φ1−φ2| = sup
t≥−τ
|φ1(t)−φ2(t)|1 (4)

constitutes a complete metric space. These objects lie in the
center of our attention as it is in such desirable metric spaces
where the contraction mappings will be defined, to guarantee
the existence and the uniqueness of solutions.

Recall that given two metric spaces (Mi,ρMi ) for i = 1,2
an operator P :M1 →M2 is a contraction if there exists a
constant α ∈ [0,1) such that x1, x2 ∈M1 imply

ρM2 (Px1,Px2) ≤ αρM1 (x1, x2) (5)

The next, well-known theorem, will be used in proving our
main results.

Theorem 2.1: [Contraction Mapping Principle] Let (M,ρ)
be a complete metric space and P :M→M a contraction
operator. Then there is a unique x ∈M with Px = x.
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The proof of the theorem can be found in any advanced
analysis or ordinary differential equations book. (See for
example [18] which is closest to our work).

Some proofs or steps in the proofs were omitted due
to space limitations. The reader is kindly referred to the
technical report that accompanies this paper, [14].

III. The model, the assumptions and the statement of the
results

In this section we will introduce the models and state the
two main results of this work. These are two LTI consensus
systems, one with multiple constant delays and another with
distributed delays.

Given N < ∞, 0 < τ < ∞ and the initial functions φi(t) :
[−τ,0]→ R|Ni=1, we consider the following models:

A. Linear Time Invariant Weights with Constant Delays

ẋi =
∑
j∈Ni

ai j(xi
j− xi), t ≥ 0

xi(t) = φi(t), t ∈ [−τ,0]
(IVP1)

where xi
j := x j(t − τ

j
i ) for some constants τ

j
i . The notation

merely signifies the delay with which agent i receives the
signal from agent j. We impose the following Assumptions:

Assumption 3.1 (H.1): ∀i, j we have τ j
i ≥ 0 such that τ =

maxi, j τ
j
i .

Assumption 3.2 (H.2): The initial functions φi are given,
continuous functions of time.

Assumption 3.3 (H.3): The weights ai j are non-negative
constants such that ai j = a ji. The associated graph is simply
connected.

Theorem 3.1: Consider an undirected connected graph
G with the associated combinatorial Laplacian L and it’s
spectrum. Let Ã :=

∑
i, j ai j denote the sum of all the com-

munication weights. Then there exist constants k ∈ R and
d > 0 such that under assumptions (H.1−3),(IVP1) converges
to a common value, k, exponentially fast with rate d if the
additional two conditions hold:

d < λ2(L) (H.4)

Ã
edτ−1

d

(
1 +
√

N
λN(L)

λ2(L)−d

)
≤ α (H.5)

for some 0 ≤ α < 1.
Remark 3.1: A first comment on the assumptions

(H.4,H.5) is that at one hand the rate of convergence of
the delayed system cannot be faster than the rate of con-
vergence of the un-delayed system while at the other hand,
(H.5) establishes a stability condition associated with the
topological connectivity of the graph, with the weights, the
rate of convergence and the maximum allowed delay.

Remark 3.2: The assumption (H.5) is rather restrictive
since A, is the sum of all the weights. This is the price
one pays for not using the Lyapunov approach for this
model. This assumption can be significantly improved if
assumptions on the symmetry of the delays are taken. For
example, if τ j

i ≡ τ > 0 then A can be replaced with |A|1,

that is the induced norm of the adjacency matrix of the
communication graph G.

Remark 3.3: The consensus point, k, has an analytical
representation and is defined in (CNS1). It is, as expected, a
function of N,ai j, τ

j
i ,φi.

B. Linear Time Invariant Weights with Distributed Delays

ẋi = −
∑
j∈Ni

ai jxi(t) +
∑
j∈Ni

ai j

∫ t

t−τ
pi j(s− t)x j(s)ds, t > 0

xi = φi, t ∈ [−τ,0]
(IVP2)

where it holds that for all and i ∼ j∫ 0

−τ
pi j(s)ds = 1 (7)

are given distribution functions. Consider the sum B̃ =∑N
i=1

∑
j∈Ni b̃i j where b̃i j are defined by

b̃i j =

0 if j < Ni

ai j
∫ 0
−τ
|pi, j(s)|(e−ds−1)ds if j ∈ Ni

(8)

Theorem 3.2: Under assumptions (H.2,3,4) if there exists,
α ∈ [0,1) such that

B̃
edτ−1

d

(
1 +
√

N
λN(L)

λ2(L)−d

)
≤ α (H.6)

then (IVP2) converges to a constant value k exponentially
fast with rate d.

IV. Preliminary results
In this section, we review preliminary results which will

be used as tools for the analysis to follow for both (IVP1)
and (IVP2).

A. The undelayed dynamics

Equations (IVP1) without delays is a simple and well-
studied system (see for example [6]). What is of importance
to recall for this work is that the solution kernel e−Lt takes
any vector z ∈ RN which can be uniquely decomposed as
z = z// + zc := 1 1

N zi + zc for some zc ∈ ∆c and “suppress” the
“magnitude” of zc by e−λ2(L)t so that limt e−Ltz = 1 1

N zi. An-
other interesting view is that the quantity I(t) := 1

N
∑N

i=1 xi(t)
is an integral of motion.

Next we state two technical lemmas to be used in the proof
of the main result. We only prove the first one due to space
limitations.

Lemma 4.1: Let z(t) ∈ RN such that limt→∞ z(t) exists
and is finite. Then for L the combinatorial Laplacian of an
undirected connected graph we have:

lim
t→∞

z(t)−
∫ t

0
Le−L(t−s)z(s)ds = 1

1
N

N∑
i=1

zi(∞) (9)

Proof: Write z(t) as the sum of the vector projected
onto the consensus subspace and it’s complement, i.e.

z(t) := z//(t) + zc(t) = 1
1
N

∑
i

zi(t) + zc(t)
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Then, since L and esL commute, the integral is equal to∫ t

0
LeLsz(s)ds =

∫ t

0
eLsLz(s)ds

=

∫ t

0
eLsLzc(s)ds =

∫ t

0
LeLszc(s)ds

and integration by parts yields∫ t

0
d(eLs)zc(s) = eLtzc(t)− zc(0)−

∫ t

0
eLsżc(s)ds

In view of the whole expression the integral

Q : =

∫ t

0
e−L(t−s)żc(s)ds

=

∫ t

0

(
e−L(t−s)−

11T

N

)
żc(s)ds→ 0

(10)

by the standard argument that the convolution of an L1

function (that is, (e−L(t−s)− 11T

N )) with a function that goes to
zero (that is, ż(t)), vanishes as well. So the whole expression
converges to

z//(t) + zc(t)− zc(t) + e−Ltzc(0) + Q→ z//(t)

Lemma 4.2 (Bounds): For any r ≤ s ≤ t∣∣∣e−L(t−s)L
∣∣∣
1 ≤
√

NλN(L)e−λ2(L)(t−s)∫ t

r

∣∣∣e−L(t−s)−
1
N

11T
∣∣∣
1ds ≤

√
N

λ2(L)
(1− e−λ2(L)(t−r))

(11)

Proof: [Sketch of Proof] Among many approaches, one
may choose to exploit the symmetry and positive semi-
definiteness of L. These properties allow an orthonormal
decomposition of RN into invariant eigenspaces. The

√
N

term comes out of the norm equivalence in RN between | · |1
and || · ||2 (the Euclidean norm).

a) Consensus Point: At this moment, we will make an
Ansatz:

All solutions of (IVP1) and (IVP2) tend to some constants
in ∆, 1k(IVP1) and 1k(IVP2), respectively.

In view of this educated guess,we take the limit t→∞ so
that xi(t)→ k for all i and solve for k to obtain (CNS1).

Proposition 4.1: An integral of motion for (IVP1) and
(IVP2) are

I(IVP1)(t) =

N∑
i=1

xi(t) +
∑
i, j

ai j

∫ t

t−τ j
i

x j(s)ds (12)

and

I(IVP2)(t) =

N∑
i=1

xi(t) +
∑
i, j

ai j

∫ 0

−τ
pi j(s)

∫ t

t−τ j
i

x j(w)dwds (13)

respectively.

Proof: For (IVP1) take

d
dt

N∑
i=1

xi =

N∑
i=1

∑
j∈Ni

ai j(x j− xi)

−
d
dt

N∑
i=1

∑
j∈Ni

ai j

∫ t

t−τ j
i

x j(s)ds

=−
d
dt

N∑
i=1

∑
j∈Ni

ai j

∫ t

t−τ j
i

x j(s)ds⇒

N∑
i=1

xi(t)−
N∑

i=1

xi(0) =−

N∑
i=1

∑
j∈Ni

ai j

∫ t

t−τ j
i

x j(s)ds

+

N∑
i=1

∑
j∈Ni

ai j

∫ 0

−τ
j
i

φ j(s)ds

to derive I(IVP1)(t). The procedure for I(IVP2)(t) is identical.

Moreover, two critical points in ∆ occur if one, for a moment,
assumes that the solutions of (IVP1) and (IVP2) tend to finite
consensus values. These points should be

k(IVP1) :=

∑N
i φi(0) +

∑
i, j ai j

∫ 0
−τ

j
i
φ j(s)ds

N +
∑

i, j ai jτ
j
i

(CNS1)

k(IVP2) :=

∑
iφi(0) +

∑
i, j ai j

∫ 0
−τ

pi j(s)
∫ 0

s φ j(w)dwds

N +
∑

i, j ai j
∫ 0
−τ

pi j(s)(−s)ds
(CNS2)

B. Fixed Point Theory

The stability problems we discuss is through contraction
mappings and it is thus formulated in complete metric spaces.
We begin defining a Banach space (B, | · |) in the background
and prove that a subset of interestM of B is closed and thus
constitutes a complete metric space. So, a crucial step is to
describe our complete metric space on which the contraction
mapping principle (Theorem 2.1) will be applied.

1) Completeness of the metric space (M,ρ): In this
section we will introduce and discuss the metric space with
such desired properties so that by “finding” a solution of
(IVP1), (IVP2) in there we will have, de-facto, solved the
problem. Given τ > 0, φ(t), t ∈ [−τ,0],d > 0,k > 0, define the
functional space M =M(τ,k,φ,d)

M := {y ∈C([−τ,∞],Rn) : y = φ|[−τ,0],

sup
t≥−τ

edt |y(t)−1k|1 <∞}
(CMS)

and the weighted metric

ρd(y1,y2) := sup
t≥0

edt |y1(t)−y2(t)|1 (14)

Proposition 4.2: The metric space (M,ρd) is complete.
Proof: [Sketch of Proof] The proof proceeds by ap-

plying straightforwardly the definition of completeness. (see
[17] and for rigorous proof [14])
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V. DynamicsWith Constant delays

In this section we will prove convergence to the consensus
point and the rate at which this occurs for the case of linear
time invariant symmetric communication weights. We rewrite
(IVP1) as follows

ẋi(t) =
∑
j∈Ni

ai j(x j− xi)−
d
dt

∑
j∈Ni

ai j

∫ t

t−τ j
i

x j(s)ds

In the vector form, we get for x = (x1, . . . , xN)T ∈ RN

ẋ = −Lx−
d
dt

∑
i, j

∫ t

t−τ j
i

A j
i x(s)ds (15)

where L is the Laplacian matrix and A j
i = [A j

i ]m,n = [am,nδi, j]
are matrices with zero elements that are not in the i, j
position.

The general solution using the variation of constants
formula and integration by parts becomes:

x(t) = e−Ltx(0)−
∫ t

0
e−L(t−s) d

ds

∑
i, j

∫ s

s−τ j
i

A j
i x(u)duds

= e−Ltx(0)−
∑
i, j

∫ t

t−τ j
i

A j
i x(u)du

+ e−Lt
∑
i, j

∫ 0

−τ
j
i

A j
iφ(u)du

+ e−Lt
∫ t

0
LeLs

∑
i, j

∫ s

s−τ j
i

A j
i x(u)duds

=: I1(t) + I2(t) + I3(t) + I4(t)

We consider now the weighted metric space (M,ρd) as it
was defined in (CMS). We will also use a weighted norm
denoted as | · |d.

The fixed point argument is the implementation of the
Contraction Mapping Principle (Theorem (2.1)) and consists
of the following steps: We define an appropriate operator
with prescribed smoothness properties, we show that this
operator maps M onto itself and we show that this operator
is a contraction in (M,ρd). So for y ∈ M and t ≥ −τ, we
define the operator P by

(Py)(t) :=



φ(t), −τ ≤ t ≤ 0

e−Lt(φ(0) +
∑

i, j
∫ 0
−τ

j
i
A j

iφ(u)du
)
−

−
∑

i, j
∫ t

t−τ j
i
A j

i y(u)du+

+e−Lt
∫ t

0 LeLs ∑
i, j

∫ s
s−τ j

i
A j

i y(u)duds, t > 0

For convenience, set z(t) := −
∑

i, j
∫ t

t−τi
j
A j

i x(u)du.

Proposition 5.1: The operator P possesses the following
properties:

1) P is a continuous function of time for any t > 0.
2) P :M→M under assumption (H.4).
3) P is a contraction under assumption (H.5).

Proof: The first statement follows trivially by the
definition. The second requires to prove that that P converges

to a value 1k ∈ ∆ with rate faster than d. Since by hypothesis
the communication graph is simply connected, the terms of
P for t > 0 converge as follows:

lim
t

(I1 + I3)(t) = 1
1
N

( N∑
i=1

φi(0) +
∑
i, j

ai j

∫ 0

−τ
j
i

φ j(s)ds
)

by the discussion in section (IV.A), and by Lemma (4.1)

lim
t

(I2 + I4)(t) = −1
1
N

∑
i, j

ai jτ
i
jk

if x(t)→ 1k. Combine the results above to conclude that the
operator P indeed converges to 1k just like all the members
of M only if k is defined as in (CNS1). Then another useful
expression for k for any x ∈M comes from the variation of
constants formula:

1k = 1
1
N

∑
i

φi(0) +
11T

N

∫ ∞

0

d
ds

∑
i, j

∫ s

s−τ j
i

A j
i x(u)duds (16)

It remains to show that |(Py)− 1k|d < ∞. We break the
components of k in the form of (16) and use the triangular
inequality to obtain the estimates.

|(Py)(t)−1k|1 ≤
∣∣∣∣∣e−Lt −

11T

N

∣∣∣∣∣
1
|φ(0)|1

+

∫ t

0

∣∣∣∣∣e−L(t−s)−
11T

N

∣∣∣∣∣
1
·

∣∣∣∣∣ d
ds

∑
i, j

∫ s

s−τ j
i

A j
i x(u)du

∣∣∣∣∣
1
ds

+

∫ ∞

t

∣∣∣∣∣11T

N
d
ds

∑
i, j

∫ s

s−τ j
i

A j
i x(u)du

∣∣∣∣∣
1
ds

It is an easy exercise to see that the first two parts converge
to 0 with rate λ2(L) whereas the last part converges with rate
d.

So the claim |(Py)(t)|d <∞ follows under the assumption
that

d < λ2(L) (H.4)

The last part is to show that (Py)(t) is a contraction in
(M,ρd). Recall the notations from sections (III) and (IV)
and consider t > 0, y1,y2 ∈M. Then

|(Py1)(t)− (Py2)(t)|1 ≤

≤

∣∣∣∣∣∑
i, j

A j
i

∫ t

t−τ j
i

(
y1(s)−y2(s)

)
ds

∣∣∣∣∣
1
+

+

∣∣∣∣∣e−Lt
∫ t

0
LeLs

∑
i, j

A j
i

∫ s

s−τ j
i

(y1(w)−y2(w))dwds
∣∣∣∣∣
1

The first term can be bounded as follows:∣∣∣∣∣∑
i, j

A j
i

∫ t

t−τi

(
y1(s)−y2(s)

)
ds

∣∣∣∣∣
1
≤

≤
∑
i, j

|ai j|

∫ t

t−τ
|
(
y1(s)−y2(s)

)
|1ds

≤ e−dt edτ−1
d

(∑
i, j

ai j

)
ρd(y1,y2)
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The second term can be bounded as follows:

∣∣∣∣∣∫ t

0
e−L(t−s)L

∑
i, j

A j
i

∫ s

s−τ j
i

(y1(w)−y2(w))dwds
∣∣∣∣∣
1
≤

≤
∑
i, j

ai j

∫ t

0
|e−L(t−s)L|1

∫ s

s−τ
|y1−y2|1ds

≤ e−dt edτ−1
d

∑
i, j

ai j

[ N∑
n=2

N
λn(L)−d

]
ρd(y1,y2)

The result follows on condition that there exists 0 ≤ α < 1
such that

Ã
edτ−1

d

(
1 +
√

N
λN(L)

λ2(L)−d

)
≤ α (H.5)

for some d < λ2(L) according to (H.4).

A. The non-symmetric case:
The above result can be generalized for the case of

non-symmetric constant weights at the expense of stronger
assumptions. This is the case of directed networks and
the sufficient assumption is for the corresponding graph to
contain a routed out sub-graph. The integral of motion for
this system is qT x where q is the left eigenvector of the (in-
degree) Laplacian L (see [6]). The analysis differs from the
symmetric case in two points:

1) The consensus point in this case is

k :=

∑N
i qiφi(0) +

∑N
i=1

∑
j∈Ni qiai j

∫ 0
−τ

j
i
φ j(s)ds

1 +
∑N

i=1
∑

j∈Ni qiai jτ
j
i

2) The bound in Lemma (4.2) needs to be modified (see
[14]).

VI. DynamicsWith Distributed delays
The analysis does not substantially change from the one

just carried out, so all but the last step of the Fixed Point
Argument will be omitted. We follow the same harmless
perturbation technique and bring the equations in the vector
form of (15). and write

ẋi =
∑
j∈Ni

ai j(x j− xi)−
d
dt

∑
j∈Ni

ai j

∫ 0

−τ
pi j(s)

∫ t

t+s
x j(w)dwds

(17)

which in vector form is

ẋ = −Lx−
d
dt

∑
i, j

∫ 0

−τ
B j

i (s)
∫ t

t+s
x(w)dwds (18)

where Bi j is the N×N matrix with elements [ai j pi j(s)δm,n]mn.
The operator solution is:

x(t) = e−Lt
(
x0 +

∑
i, j

∫ 0

−τ
B j

i (s)
∫ 0

−s
φ(w)dwds

)
−

∑
i, j

∫ 0

−τ
B j

i (s)
∫ t

t+s
x(w)dwds+

+

∫ t

0
Le−L(t−s)

∑
i, j

∫ 0

−τ
B j

i (ŝ)
∫ s

s+ŝ
x(w)dwdŝds

So for x1,x2 ∈ M we follow the same procedure as above,
but with a bit more care:

The first one can be bounded as follows:

∣∣∣∣∣∑
i, j

∫ 0

−τ
B j

i (s)
∫ t

t+s
x1(w)−x2(w)dwds

∣∣∣∣∣
1

≤
∑
i, j

∫ 0

−τ
ai, j|pi, j(s)|

∫ t

t+s
|x1(w)−x2(w)|1dwds

≤
∑
i, j

∫ 0

−τ
ai, j|pi, j(s)|

∫ t

s+t
e−dwdwdsρd(x1,x2)

≤

(∑
i, j

ai, j

∫ 0

−τ
|pi, j(s)|(e−ds−1)ds

)
e−dtρd(x1,x2)

and respective bound for the second term just like the
multiple delays case. So here the difference is not only on
the consensus point (defined in (CNS2)) but also in the
assumption (H.5), which from the analysis above, needs to
be replaced by (H.6).

VII. Discussion and Concluding Remarks
The crucial factor when one models the dynamics of

multiple agents, is the amount of symmetry the designer
is willing to sustain. The more symmetrical the proposed
model is, the easier the mathematical manipulation is and
the stronger (or more elegant) the results are. The price for
this is the distance from Reality. The more symmetrical a
system is, the more ideal hence the less realistic is.

An excellent example of this general principle is the
Consensus Dynamics, especially in the LTI case. Although
the step from symmetric to asymmetric weights ai j effects
only the consensus point; the step from synchronous to
asynchronous communication can be really hard to analyse
using a Lyapunov method. The interested reader is refered
to [14] where we discuss these difficulties for the system of
this paper.

The Fixed Point Theory comes to fulfil the gap since it
does not require a, usually too insightful, construction of a
Lyapunov candidate, at the expense of harder analysis and
perhaps a bit strong assumptions. The main advantage of
this approach is that it cannot lead to a dead-end. Here
the researcher is free to choose his own space of function
and search for an existence of a solution of the model he
proposes. In this work, we considered simple consensus
models. We exploited the heritage of the solutions of the
synchronous version (i.e. convergence to a common value
with exponential rate) and we asked whether similar behavior
can be found in the delayed case and at what cost. What is in,
our opinion, is very interesting, is that through the procedure
of constructing a contraction mapping, we were able to
understand the interplay between symmetry and sufficient
assumptions. This is depicted, in the case of constant delays
for instance, in hypothesis (H.5).

This major condition becomes stricter (i.e. restricts the
maximum delay τ) mainly in two cases: The first is this
of weak connectivity, which interprets to small λ2(L) > 0
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and the second is the magnitude of asymmetry, which is
represented by A. Indeed in this work we considered the
most asymmetrical case for the delays, that is each agent i
has a possibly different delay in it’s communication with j
τ

j
i with in principal i , j. This freedom costs a large value

for A. The reader should rest assured that A would be much
smaller in case the τ j

i = τi ∀ j ∈ Ni or even more symmetrical
τ

j
i ≡ τ.

Another interesting feature of assumptions (H.5) and (H.6)
is this of d and τ which is yet to be investigated more. In
[14] we study the case where the weight vary with time.
There, the trade-off between symmetry and assumptions is
even more distinct.
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[3] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel
type of phase transition in a system of self-driven particles,” Physical
Review Letters, vol. 75, no. 6, pp. 1226–1229, 1995.

[4] V. Blondel, J. Hendrickx, A. Olshevsky, and J. Tsitsiklis, “Con-
vergence in multiagent coordination, consensus, and flocking,” in
Decision and Control, 2005 and 2005 European Control Conference.
CDC-ECC ’05. 44th IEEE Conference on, dec. 2005, pp. 2996 – 3000.

[5] L. Moreau, “Stability of continuous-time distributed consensus
algorithms,” 43rd IEEE Conference on Decision and Control, p. 21,
2004. [Online]. Available: http://arxiv.org/abs/math/0409010

[6] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton University Press, 2010.

[7] F. Cucker and S. Smale, “Emergent behavior in flocks,” IEEE Trans-
actions on Automatic Control, vol. 52, no. 5, pp. 852–862, 2007.

[8] M. Porfiri and D. L. Stilwell, “Consensus seeking over random
weighted directed graphs,” Automatic Control IEEE Transactions on,
vol. 52, no. 9, pp. 1767–1773, 2007.

[9] I. Matei, N. Martins, and J. S. Baras, “Almost sure convergence to
consensus in markovian random graphs,” 2008 47th IEEE Conference
on Decision and Control, pp. 3535–3540, 2008.

[10] A. Papachristodoulou, A. Jadbabaie, and U. Munz, “Effects of delay
in multi-agent consensus and oscillator synchronization,” Automatic
Control, IEEE Transactions on, vol. 55, no. 6, pp. 1471 –1477, june
2010.

[11] U. Munz, A. Papachristodoulou, and F. Allgower, “Delay-dependent
rendezvous and flocking of large scale multi-agent systems with
communication delays,” in Decision and Control, 2008. CDC 2008.
47th IEEE Conference on, dec. 2008, pp. 2038 –2043.

[12] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” Automatic Control,
IEEE Transactions on, vol. 49, no. 9, pp. 1520 – 1533, sept. 2004.

[13] S. Motsch and E. Tadmor, “A new model for self-organized dynamics
and its flocking behavior,” Journal of Statistical Physics, vol. 144,
no. 5, pp. 923–947, 2011.

[14] C. Somarakis and J. S. Baras, “A fixed point theory approach to multi-
agent consensus dynamics with delays,” Tech. Rep. TR-2013-01,
2013. [Online]. Available: http://hdl.handle.net/1903/13392

[15] C. Godsil and G. Royle, Algebraic Graph Theory. Springer, 2001,
vol. 207.

[16] B. Bollobas, Modern Graph Theory, S. Axler, F. W. Gehring, and
K. E. Ribet, Eds. Springer, 1998, vol. 184. [Online]. Available:
http://www.springer.com/math/numbers/book/978-0-387-98488-9

[17] N. G. Markley, Principles of Differential Equations, ser. Pure and
Applied Mathematics. New Jersey: Wiley-Intersciense Series of Texts,
Monographs, and Tracts, 2004.

[18] T. Burton, Stability by Fixed Point Theory for Functional
Differential Equations, ser. Dover Books on Mathematics
Series. Dover Publications, 2006. [Online]. Available:
http://books.google.com/books?id=9qITJd6 sHAC

1501


